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Neutron-diffraction experiments on single-crystal samples are generally carried out using either an 
m-scan (crystal rotating, detector fixed) or a 0-20 scan (detector coupled 2:1 to the crystal). In order for 
the center of the diffracted beam to enter the detector on its centerline at all angular settings of the crystal 
during the scan of a Bragg reflection, neither of these conventional scanning techniques is optimum. A 
formula is derived which gives the optimum coupling between the detector and the crystal motions, 
and it is suggested this mode of scanning should be implemented in performing neutron-diffraction 
experiments on single crystals. 

Introduction 

Neutron-diffraction experiments on single-crystal sam- 
ples are generally carried out using either an co-scan 
(crystal rotating, detector fixed) or a 0-20 scan (detector 
coupled 2:1 to the crystal). Coupling the detector and 
the crystal motions in either of these two ways is not 
a constraint dictated by most diffractometers currently 
in use, since the crystal and the detector are usually 
driven by separate stepping motors which are individu- 
ally programmable. The question of whether there is in 
general a better way to scan Bragg reflections is the 
subject of this note. 

In view of the fact that in recent years considerable at- 
tention has been given to the problem of obtaining 
highly accurate diffraction data (see for example Willis, 
1969), it would seem to be important to scan the 
Bragg reflections in the most ideal manner possible. 
Numerous papers have been published over the years 
on the resolution of neutron crystal spectrometers (Ca- 
glioti, Paoletti & Ricci, 1958, 1960; Caglioti & Ricci, 
1962; Caglioti, 1964; Caglioti & Tocchetti, 1964, 1965; 
Willis, 1960; Cooper & Nathans, 1968). However, none 
of these authors has suggested that there is an optimum 
scanning procedure for the measurement of the inte- 
grated intensity of each Bragg reflection, and that this 
procedure can be easily implemented. Whether or not 
the accuracy of the integrated intensities will be im- 
proved by using this optimum scanning procedure will 
depend on the geometry and instrumental parameters 
of the spectrometer. 

Derivation of the optimum scanning ratio 

A schematic diagram of a typical neutron diffractom- 
eter is shown in Fig. 1. Neutrons from the reactor, 
which are uncorrelated in angle and energy, pass through 
an in-pile collimator and impinge upon a monochro- 
mating crystal. A small fraction of these (~  1%) are 
Bragg reflected at an angle 20M and pass through the 
secondary collimator. This forms a beam incident on 

the sample crystal which has an energy angle correlation. 
As a result of this correlation in the incident beam, the 
center of the angular distribution of reflected wave vec- 
tors will shift in a particular way dependent on the 
scattering angle 20s as the sample crystal is rotated 
through a Bragg reflection. In order to obtain the inte- 
grated intensity, it is necessary for the detector to 
accept all of these Bragg scattered neutrons for each 
angular setting of the crystal rp (with essentially equal 
efficiency). If the detector is 'wide-open' and large, this 
will be accomplished without moving the detector. 
However, in order to reduce the background counting 
rate due to incoherent scattering and the correction 
necessary for thermal diffuse scattering, a slit (or a 
collimator) is generally placed in front of the detector. 
Ideally this slit should be sufficiently wide to accept 
all of the Bragg scattered neutrons, but no wider. Under 
these conditions the detector must be moved as a func- 
tion of crystal angle rp. It is apparent that the optimum 
scanning ratio is obtained if the detector is moved 
through an angle F(~0) which keeps the center of the 
diffracted beam aligned with the centerline of the de- 
tector. This is illustrated in Fig. 2. This Figure is drawn 
for a narrow mosaic monochromator. The collimation 
is assumed to be due primarily to the secondary colli- 
mator. GM is the monochromator reciprocal-lattice vec- 
tor. kl and k2 are the wave-vectors incident on and 
scattered from the sample respectively. The two spheres 
of reflection centered at A and B are drawn for 
incident wave-vectors oriented at the edges of the secon- 
dary collimation 2el. As the sample is rotated through 
the Bragg reflection corresponding to the reciprocal- 
lattice vector Gs, intensity is first obtained when the 
tip of Gs falls on sphere A at the point a. The detector 
should be positioned to accept the scattered ray k2 at 
the point a'. As the crystal is rotated from the point 
a to the point b, the detector should move from the 
point a' to the point b'. Thus, the scanning ratio should 
be 

g V(~,) Zy 
=--q~ - A~0" (1) 
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We will now derive an expression for g for any scat- 
tering angle 20s. We will assume that the collimator 
transmission functions and the crystal reflectivities are 
Gaussian in shape as has been done in the papers by 
Caglioti and coworkers and by Cooper & Nathans. 
Thus, the transmission of the in-pile collimator for a 
neutron of wave-vector k0 oriented off the nominal 
ray direction by an angle 70 is given by 

To(7o) = exp { -  72/2~2}. (2) 

The reflectivity of the monochromator as a function 
of mosaic orientation angle AM and its mosaic spread 
r/M is 

PM(AM)=PM exp {-A~12,1~}. (3) 

Similarly the transmission of the secondary collimator 
for a ray 71 is 

Tl(7,)=exp {- (4) 
and the reflectivity of the sample crystal in terms of 
the mosaic orientation angle As and its mosaic spread 
is 

es(As)=Ps exp {-A2 /2rl 2 }. (5) 

The intensity 1(7, ~o) of the Bragg beam scattered off 
the sample at an angle 7 (away from the nominal 20s) 
for a given setting of the crysral ~0 = O-Os involves an 
integration over wave-number, since the detector does 
not distinguish between the energies of the scattered 
neutrons. That is, 

/(71rp)= I To(Yo)PM(AM)Ps(As)Tl(yl)d (_A~_). (6) 

In order to do this integration, the variables 70, AM, 
As, and 71 must be expressed in terms of 7, ~0 and Ak/k. 
This is easily done using the Bragg conditions for the 
monochromator and the sample (see, for example, Wil- 
lis, 1960), the results are 

70 = 7 - 2  ~ (eM tan OM + eS tan Os) (7a) 

Ak 
AM = 7-- -~ (eM tan OM + 28S tan Os) (7b) 

Ak (es tan Os) (7e) As= 7 -  ~o- -~ 

71 = 7 - 2  _A_if_ (es tan Os). (7d) 

OM and Os are the nominal Bragg angles of the mono- 
chromator and sample respectively, eM and es give the 
sense of scattering [left (+  1), or right ( -1 ) ]  from the 
monochromator and sample respectively. 

Using these results, we find that the intensity of the 
scattered beam as a function of 7 for a given crystal 
setting ~0 = O-Os is 

I(ydo)=Io exp {-½[(y-F(~o))z/62 +~o2/az]} . (8) 

A schematic plot of this function is shown in Fig. 3. 

The angular width 6 of the scattered beam is indepen- 
dent of ~0. That is, as the crystal is rotated, the angular 
shape of the scattered beam remains the same. When 
the crystal is set at the nominal Bragg angle (~o = 0) the 
counting rate is given by the area A1, and when the 
crystal is set at some other angle ~0 the counting rate 
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Fig. I. Schematic diagram of a typical neutron diffraction 
experiment. 

Sp 

Fig. 2. Diagram in k space illustrating that the detector must 
be moved by an angle Ay when the sample crystal is rotated 
through an angle A~. The optimum scanning ratio g is given 
Ay]A¢ which is seldom 2. 
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is given by the area A2 in Fig. 3. This is only true if the 
detector accepts all of the Bragg scattered neutrons 
for each ~0. To insure that this is the case, and that the 
beam enters the detector symmetrically for each setting 
of the crystal ~0, the detector should be moved by the 
angle F(~0). The width of the crystal rocking curve is 
then given by a. (Expressions for 6, and a are given in 
the Appendix.) We are only concerned here with the 
function F(~0) which determines the optimum scanning 
ratio g. 
We find that 

On the 'parallel' side of the origin, the variable a is 
negative, that is eM = + 1, es = --1, or e ~ = -  1, es= 
+ 1. This is the configuration in which most diffraction 
experiments are done, although in the determination 
of the collimation parameters it is quite often expedient 
to scan some Bragg reflections on the antiparallel side 
of the origin. 

The scanning ratio, g, given by equation (11), can 
be written as a function of rlM/Oq and rls/Oq. In Fig. 4 
we show how g varies as a function of scattering angle 
in the case where the mosaic spreads of the monochro- 

g -  
2r/2~x2(a2 + 3a + 1) + @x2(2a 2 + 3a + 1) + 2aZr/M~ o 2  2 

oqrls2 z + o~2ri2M(a + 2)2 + 4r/Mr/sz 2 + ~2Ct2 (1 + a) z +riM%az 2 z + %rls2 2 • (9) 

The variable a determines the scattering angle 20s, 

es tan Os 
a--- ................. (10) 

eM tan Ou " 

Discussion 

The expression for the optimum scanning ratio g is 
rather complicated. However, for a given experiment 
with a definite set of instrumental parameters, it is 
simply a known function of the Bragg angle Os. In order 
to obtain an understanding of the wide variation of the 
scanning ratio as a function of scattering angle, we will 
consider the case where the most important collimation 
in the system is the secondary collimator (i.e. O~o--~oo). 
In this case 

~2[ 1 + 3a + 2a 2] + 2r/2a 2 (11) 
g =  + a ) :  " 

The two width parameters are then 

7- J 1,1s +4a  r/Mr/s + a  ~lr/M (12) fi2= (1 ± 2 a ~ 2 t X  2 ' ' 2  2 2 2 2 2 2 

r/2 + ~2(1 + a) z + aZr/2 

and, 
aZ=r/] +~2(1 +a) :  + aZr/2 . (13) 

/ $ \ I cp / /  \y~,xp ( ~, ~z ) 

i i i i  \ ~  

/ \ \  
j / /  N \  

7 , - - ~  

Fig. 3. Schematic diagram of  the diffracted beam intensity 
I(y,q~) as a funct ion of  the outgoing ray direction y for 
various crystal angle settings. 

mator and sample are equal. We see that for large scat- 
tering angles (large [al), the optimum scanning ratio 
g is very close to 2 (i.e. a 0-20 scan is best). When the 
ratio of the mosaic spreads to the collimation angle a~ 
is small, the optimum scanning ratio deviates rapidly 
from 2, increasing to a large positive value just outside 
the 'parallel focusing' condition (a= -1 ) ,  and then to 
a large negative value just inside the parallel position. 
As the ratio of the mosaic spread to the collimation 
angle increases, the large variation of g near a = -  1 
becomes less pronounced. However, in the region where 
a large fraction of diffraction data is taken (say between 
a = -  3 and 0), the optimum scan is seldom 0-20 or 
0-rotation. 
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Fig. 4. This Figure shows the optimum scanning ratio g as a 
funct ion of  the parameter  a = es tan Os/e~  tan 0M. In this 
case we have set the mosaic spreads of  the m o n o c h r o m a t o r  
~/M and sample r/s equal. Curve A is for r =  tls/oq = ~ / ~ 1  = 
0.01, where cq is the col l imation angle of  the secondary 
collimator.  B is for r = 0 . 2 ,  C for r = 0 . 5 ,  D for r = l . 0 ,  E for  
r=2-0. 
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The fact that in a limited region between a =  0 and 
a = -  1, the detector should actually be rotated in a 
direction o p p o s i t e  to the crystal motion is curious. That 
this is in fact correct is shown in Fig. 5 which is drawn 
for the case of a narrow mosaic monochromator. The 
two spheres A and B are drawn again as in Fig. 2. For 
a reflection just outside the parallel position having a 
reciprocal-lattice vector Gx, the diffracted beam moves 
from the point a' to b' as the tip of G~ is swept from 
a to b. However, for the reflection just inside the par- 
allel position, the reciprocal-lattice vector Gz sweeps 
through the sphere B first and then the sphere A such 
that the tip of G2 moves from b to a and the diffracted 
beam moves from b' to a'. That is, the detector should 
move in a clockwise sense when the crystal moves in a 
counterclockwise sense. 

In Fig. 6 we show how the optimum scanning ratio in 
g changes as a function of scattering angle for the case 
when the monochromator mosaic spread r/M and the 
collimation angle cq are equal. In this case when the 
sample mosaic spread r/s is small, there is again a rapid 
variation of the optimum scan in the region a = - 2  to 
a=0 .  As the sample mosaic spread becomes larger, 
the optimum scanning ratio is consistently less than 2 
and approaches zero near the parallel position. 

C o n c l u s i o n s  

We have shown in this paper that the optimum scan in 
single-crystal neutron diffraction experiments is sel- 
dom either a 0-rotation or a 0-20 scan. The question 
of course arises as to the importance of performing the 
optimum scan in measuring integrated Bragg reflec- 
tions. Under what condition will the measurement of 
all the Bragg reflections using a given fixed mode of" 
scanning lead to errors? 

b 
- i , -  I l  

b I 
l11 

Fig. 5. This diagram shows that for a certain region inside the 
parallel position, the detector should actually be rotated in a 
direction opposite to the rotation direction of the crystal. 
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Fig. 6. This Figure is similar to Fig. 4. However the mono- 
chromator mosaic spread r/M is set equal to the collimation 
angle ~1. Curve A is for ~ls/~l =0.01, B for ~lS/al =0.5, C for 
~ls/ax = 1, D for qs /a l  = 2, E for ~s/ax = 5. 

It is clear that in the case where the monochromator 
and sample mosaic spreads are both small compared 
with the collimation cq, the suggested large scanning 
ratio g near a = - 1  is not necessary since the rocking 
width a is very narrow and consequently the net shift 
in the optimum detector position F is very small. Thus, 
either a 0-rotation or a 0-20 scan is acceptable. How- 
ever in the region a = - 3 to a = - 2, the rocking widths 
cr will become fairly broad, and the detector must be 
moved to accept the scattered beam symmetrically. 
Curve A in Fig. 4 shows that the detector should be 
moved from 2.5 to 3.0 times faster than the crystal in 
this region. It will be noted that in this case, the angular 
divergence ~ of the outgoing beam is very small (see 
Fig. 2), so that the aperture on the detector can, in 
principle, be made rather small. 

In the case where the sample mosaic spread is large, 
the rocking curve widths cr will consistently be large. The 
net motion of the detector necessary to accept all of 
the reflected beam at each crystal setting will also be 
large. A coupling between the detector and the crystal 
of 2:1 is not a good choice in this case. As shown by 
curve E in Fig. 6, the optimum scanning ratio varies 
from about 1.5 at large angles (a= - 6 )  to near zero at 
small angles. 

It is difficult to make a general statement of the 
range of scattering angles when a 0-rotation is better 
than a 0-20 scan, although it is clear that at high angles 
the 0-20 scan is preferable, and at small angles a 0- 
rotation may be better as pointed out by Arndt & 
Willis (1966). 
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Our recommendation is that the optimum scanning 
ratio as given by equation (9) should always be used. 
This will leave little doubt in the experimenter's mind 
of whether a 0-rotation or a 0-20 scan is best for a given 
reflection, since the diffracted beam will always be 
entering the detector symmetrically on its centerline. 
It is anticipated that most experimentalists will be re- 
ticent about adopting this variable mode of scanning, 
since it is commonly thought that all of the data for a 
given experiment should be accumulated without chang- 
ing the experimental technique. However, careful con- 
sideration will show that employing the optimum scan- 
ning ratio appropriate for each scattering angle 20s 
is the only technique which measures all Bragg reflec- 
tions in the same way. 

Implementing this idea for tape controlled or com- 
puter controlled spectrometers is straightforward. The 
precise scanning ratio g given by equation (9) cannot 
always be achieved because of the minimum angular 
increments allowed by stepping motors. However, it 
is clear that the optimum scan can generally be ade- 
quately approximated. 

It is a pleasure to thank Dr A. Overhauser for his 
criticisms and suggestions during the course of pre- 
paring this manuscript. I would also like to thank Mr 
E. Gfirmen for checking some of the equations. 

A P P E N D I X  
Expressions for 6, (r 

The width of the Bragg scattered beam is given by 

Expressions similar to these for 6 and a have been given 
by Caglioti, Paoletti & Ricci (1960) and Caglioti & Ricci 
(1962) for the case when there is collimation on the 
detector. However, care must be exercised in reducing 
their expressions to these. Their expression for B,  will 
be our a if the detector collimation parameter is made 
large, and their A ,  will be our 6 if this parameter is 
made small. There is no equivalent expression for g. 
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The width of the crystal rocking curve is given by 
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